Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Health Phys ; 126(6): 397-404, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38568172

RESUMO

ABSTRACT: Experiments that examine the impacts of subnatural background radiation exposure provide a unique approach to studying the biological effects of low-dose radiation. These experiments often need to be conducted in deep underground laboratories in order to filter surface-level cosmic radiation. This presents some logistical challenges in experimental design and necessitates a model organism with minimal maintenance. As such, desiccated yeast ( Saccharomyces cerevisiae ) is an ideal model system for these investigations. This study aimed to determine the impact of prolonged sub-background radiation exposure in anhydrobiotic (desiccated) yeast at SNOLAB in Sudbury, Ontario, Canada. Two yeast strains were used: a normal wild type and an isogenic recombinational repair-deficient rad51 knockout strain ( rad51 Δ). Desiccated yeast samples were stored in the normal background surface control laboratory (68.0 nGy h -1 ) and in the sub-background environment within SNOLAB (10.1 nGy h -1 ) for up to 48 wk. Post-rehydration survival, growth rate, and metabolic activity were assessed at multiple time points. Survival in the sub-background environment was significantly reduced by a factor of 1.39 and 2.67 in the wild type and rad51 ∆ strains, respectively. Post-rehydration metabolic activity measured via alamarBlue reduction remained unchanged in the wild type strain but was 26% lower in the sub-background rad51 ∆ strain. These results demonstrate that removing natural background radiation negatively impacts the survival and metabolism of desiccated yeast, highlighting the potential importance of natural radiation exposure in maintaining homeostasis of living organisms.


Assuntos
Dessecação , Saccharomyces cerevisiae , Saccharomyces cerevisiae/efeitos da radiação , Rad51 Recombinase/metabolismo , Exposição à Radiação/efeitos adversos , Exposição à Radiação/análise , Doses de Radiação
2.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542312

RESUMO

Radiation therapy for abdominopelvic malignancies often results in damage to the gastrointestinal tract (GIT) and permanent changes in bowel function. An overlooked component of the pathophysiology of radiation-induced bowel injury is the role of the gut microbiome. The goal of this research was to identify the impacts of acute radiation exposure on the GIT and gut microbiome. C57BL/6 mice exposed to whole-body X-rays (0.1-3 Gy) were assessed for histological and microbiome changes 48 h post-radiation exposure. Within the ileum, a dose of 3 Gy significantly decreased crypt depth as well as the number of goblet cells, but increased overall goblet cell size. Overall, radiation altered the microbial distribution within each of the main phyla in a dose- and tissue-dependent manner. Within the Firmicutes phylum, high dose irradiation resulted in significant alterations in bacteria from the class Bacilli within the small bowels, and from the class Clostridia in the large bowels. The 3 Gy radiation also significantly increased the abundance of bacterial families from the Bacteroidetes phylum in the colon and feces. Overall, we identified various alterations in microbiome composition following acute radiation exposure, which could potentially lead to novel biomarkers for tracking patient toxicities or could be used as targets for mitigation strategies against radiation damage.


Assuntos
Microbioma Gastrointestinal , Exposição à Radiação , Lesões por Radiação , Humanos , Animais , Camundongos , Microbioma Gastrointestinal/fisiologia , Camundongos Endogâmicos C57BL , Trato Gastrointestinal/microbiologia , Bactérias/efeitos da radiação , Firmicutes , Raios X
3.
Int J Radiat Biol ; 100(4): 573-583, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38289679

RESUMO

PURPOSE: Exposure to ionizing radiation is one of the known risk factors for the development of lens opacities. It is believed that radiation interactions with lens epithelial cells (LEC) are the underlying cause of cataract development, however, the exact mechanisms have yet to be identified. The aim of this study was to investigate how different radiation dose and fractionation impact normal LEC function. MATERIALS AND METHODS: A human derived LEC cell line (HLE-B3) was exposed to a single acute x-ray dose (0.25 Gy) and 6 fractionated doses (total dose of 0.05, 0.1, 0.25, 0.5, 1, and 2 Gy divided over 5 equal fractions). LEC were examined for proliferation using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and migration using a Boyden chamber assay at various time points (0.25, 0.5, 1, 2, 4, 7, 9, 11, and 14 d) post-irradiation. Transcriptomic analysis through RNA sequencing was also performed to identify differentially expressed genes and regulatory networks in cells following 4 different acute exposures and 1 fractionated exposure. RESULTS: Exposure to an acute dose of 0.25 Gy significantly increased proliferation and migration rates, peaking at 7 d post irradiation (20% and 240% greater than controls, respectively), before returning to baseline levels by day 14. Fractionated exposures had minimal effects up to a dose of 0.5 Gy, but significantly reduced proliferation and migration after 1 and 2 Gy by up to 50%. The largest transcriptional response occurred 12 h after an acute 0.25 Gy dose, with 362 genes up-regulated and 288 genes down-regulated. A unique panel of differentially expressed genes was observed between moderate versus high dose exposures, suggesting a dose-dependent transcriptional response in LEC that is more pronounced at lower doses. Gene ontology and upstream regulator analysis identified multiple biological processes and molecular functions implicated in the radiation response, in particular differentiation, motility, receptor/ligand binding, cell signaling and epithelial-mesenchymal cell transition. CONCLUSIONS: Overall, this research provides novel insights into the dose and fractionation effects on functional changes and transcriptional regulatory networks in LEC, furthering our understanding of the mechanisms behind radiation induced cataracts.


Assuntos
Catarata , Células Epiteliais , Humanos , Relação Dose-Resposta à Radiação , Células Epiteliais/efeitos da radiação , Radiação Ionizante , Raios X , Catarata/etiologia
4.
Nutrients ; 15(21)2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37960343

RESUMO

Type 2 diabetes mellitus (T2DM) remains a global health concern. Emerging clinical trial (CT) evidence suggests that probiotic intervention may promote a healthy gut microbiome in individuals with T2DM, thereby improving management of the disease. This systematic literature review summarizes thirty-three CTs investigating the use of oral probiotics for the management of T2DM. Here, twenty-one studies (64%) demonstrated an improvement in at least one glycemic parameter, while fifteen studies (45%) showed an improvement in at least one lipid parameter. However, no article in this review was able to establish a uniform decrease in glycemic, lipid, or blood pressure profiles. The lack of consistency across the studies may be attributed to differences in probiotic composition, duration of probiotic consumption, and probiotic dose. An interesting finding of this literature review was the beneficial trend of metformin and probiotic co-administration. Here, patients with T2DM taking metformin demonstrated enhanced glycemic control via the co-administration of probiotics. Taken together, the overall positive findings reported across the studies in combination with minimal adverse effects constitute ground for further quality CTs. This review provides recommendations for future CTs that may address the shortcomings of the current studies and help to extract useful data from future investigations of the use of probiotics in T2DM management.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Probióticos , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glicemia , Probióticos/uso terapêutico , Lipídeos
5.
Cells ; 12(22)2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37998390

RESUMO

Candidiasis is a highly pervasive infection posing major health risks, especially for immunocompromised populations. Pathogenic Candida species have evolved intrinsic and acquired resistance to a variety of antifungal medications. The primary goal of this literature review is to summarize the molecular mechanisms associated with antifungal resistance in Candida species. Resistance can be conferred via gain-of-function mutations in target pathway genes or their transcriptional regulators. Therefore, an overview of the known gene mutations is presented for the following antifungals: azoles (fluconazole, voriconazole, posaconazole and itraconazole), echinocandins (caspofungin, anidulafungin and micafungin), polyenes (amphotericin B and nystatin) and 5-fluorocytosine (5-FC). The following mutation hot spots were identified: (1) ergosterol biosynthesis pathway mutations (ERG11 and UPC2), resulting in azole resistance; (2) overexpression of the efflux pumps, promoting azole resistance (transcription factor genes: tac1 and mrr1; transporter genes: CDR1, CDR2, MDR1, PDR16 and SNQ2); (3) cell wall biosynthesis mutations (FKS1, FKS2 and PDR1), conferring resistance to echinocandins; (4) mutations of nucleic acid synthesis/repair genes (FCY1, FCY2 and FUR1), resulting in 5-FC resistance; and (5) biofilm production, promoting general antifungal resistance. This review also provides a summary of standardized inhibitory breakpoints obtained from international guidelines for prominent Candida species. Notably, N. glabrata, P. kudriavzevii and C. auris demonstrate fluconazole resistance.


Assuntos
Antifúngicos , Candida , Antifúngicos/farmacologia , Candida/genética , Fluconazol/farmacologia , Equinocandinas/farmacologia , Azóis/farmacologia
6.
Cells ; 12(19)2023 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-37830558

RESUMO

FRA1 (FOSL1) is a transcription factor and a member of the activator protein-1 superfamily. FRA1 is expressed in most tissues at low levels, and its expression is robustly induced in response to extracellular signals, leading to downstream cellular processes. However, abnormal FRA1 overexpression has been reported in various pathological states, including tumor progression and inflammation. To date, the molecular effects of FRA1 overexpression are still not understood. Therefore, the aim of this study was to investigate the transcriptional and functional effects of FRA1 overexpression using the CGL1 human hybrid cell line. FRA1-overexpressing CGL1 cells were generated using stably integrated CRISPR-mediated transcriptional activation, resulting in a 2-3 fold increase in FRA1 mRNA and protein levels. RNA-sequencing identified 298 differentially expressed genes with FRA1 overexpression. Gene ontology analysis showed numerous molecular networks enriched with FRA1 overexpression, including transcription-factor binding, regulation of the extracellular matrix and adhesion, and a variety of signaling processes, including protein kinase activity and chemokine signaling. In addition, cell functional assays demonstrated reduced cell adherence to fibronectin and collagen with FRA1 overexpression and altered cell cycle progression. Taken together, this study unravels the transcriptional response mediated by FRA1 overexpression and establishes the role of FRA1 in adhesion and cell cycle progression.


Assuntos
Proteínas Proto-Oncogênicas c-fos , Fator de Transcrição AP-1 , Humanos , Divisão Celular , Linhagem Celular , Regulação da Expressão Gênica , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo
7.
Radiat Res ; 200(1): 48-64, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37141110

RESUMO

The CGL1 human hybrid cell system has been utilized for many decades as an excellent cellular tool for investigating neoplastic transformation. Substantial work has been done previously implicating genetic factors related to chromosome 11 to the alteration of tumorigenic phenotype in CGL1 cells. This includes candidate tumor suppressor gene FOSL1, a member of the AP-1 transcription factor complex which encodes for protein FRA1. Here we present novel evidence supporting the role of FOSL1 in the suppression of tumorigenicity in segregants of the CGL1 system. Gamma-induced mutant (GIM) and control (CON) cells were isolated from 7 Gy gamma-irradiated CGL1s. Western, Southern and Northern blot analysis were utilized to assess FOSL1/FRA1 expression as well as methylation studies. GIMs were transfected to re-express FRA1 and in vivo tumorigenicity studies were conducted. Global transcriptomic microarray and RT-qPCR analysis were used to further characterize these unique cell segregants. GIMs were found to be tumorigenic in vivo when injected into nude mice whereas CON cells were not. GIMs show loss of Fosl/FRA1 expression as confirmed by Western blot. Southern and Northern blot analysis further reveals that FRA1 reduction in tumorigenic CGL1 segregants is likely due to transcriptional suppression. Results suggest that radiation-induced neoplastic transformation of CGL1 is in part due to silencing of the FOSL1 tumor suppressor gene promoter by methylation. The radiation-induced tumorigenic GIMs transfected to re-express FRA1 resulted in suppression of subcutaneous tumor growth in nude mice in vivo. Global microarray analysis and RT-qPCR validation elucidated several hundred differentially expressed genes. Downstream analysis reveals a significant number of altered pathways and enriched Gene Ontology terms genes related to cellular adhesion, proliferation, and migration. Together these findings provide strong evidence that FRA1 is a tumor suppressor gene deleted and epigenetically silenced after ionizing radiation-induced neoplastic transformation in the CGL1 human hybrid cell system.


Assuntos
Transformação Celular Neoplásica , Neoplasias Induzidas por Radiação , Animais , Camundongos , Humanos , Camundongos Nus , Transformação Celular Neoplásica/genética , Células HeLa , Genes Supressores de Tumor , Carcinogênese/genética , Neoplasias Induzidas por Radiação/patologia , Fenótipo , Genômica , Epigênese Genética , Regulação Neoplásica da Expressão Gênica
8.
Int J Mol Sci ; 24(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37239811

RESUMO

The exposure of ionizing radiation during early gestation often leads to deleterious and even lethal effects; however, few extensive studies have been conducted on late gestational exposures. This research examined the behavior al effects of C57Bl/6J mouse offspring exposed to low dose ionizing gamma irradiation during the equivalent third trimester. Pregnant dams were randomly assigned to sham or exposed groups to either low dose or sublethal dose radiation (50, 300, or 1000 mGy) at gestational day 15. Adult offspring underwent a behavioral and genetic analysis after being raised under normal murine housing conditions. Our results indicate very little change in the behavioral tasks measuring general anxiety, social anxiety, and stress-management in animals exposed prenatally across the low dose radiation conditions. Quantitative real-time polymerase chain reactions were conducted on the cerebral cortex, hippocampus, and cerebellum of each animal; results indicate some dysregulation in markers of DNA damage, synaptic activity, reactive oxygen species (ROS) regulation, and methylation pathways in the offspring. Together, our results provide evidence in the C57Bl/6J strain, that exposure to sublethal dose radiation (<1000 mGy) during the last period of gestation leads to no observable changes in behaviour when assessed as adults, although some changes in gene expression were observed for specific brain regions. These results indicate that the level of oxidative stress occurring during late gestation for this mouse strain is not sufficient for a change in the assessed behavioral phenotype, but results in some modest dysregulation of the genetic profile of the brain.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Humanos , Feminino , Gravidez , Animais , Camundongos , Efeitos Tardios da Exposição Pré-Natal/genética , Camundongos Endogâmicos C57BL , Radiação Ionizante , Raios gama , Ansiedade/etiologia , Comportamento Animal
9.
Radiat Res ; 199(3): 290-293, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36745561

RESUMO

In 2017, a special edition of Radiation Research was published [Oct; Vol. 188 4.2 (https://bioone.org/journals/radiation-research/volume-188/issue-4.2)] which focused on a recently established radiobiology project within SNOLAB, a unique deep-underground research facility. This special edition included original articles, reviews and commentaries relevant to the research goals of this new project which was titled Researching the Effects of the Presence and Absence of Ionizing Radiation (REPAIR). These research goals were founded in understanding the biological effects of terrestrial and cosmic natural background radiation (NBR). Since 2017, REPAIR has evolved into a sub-NBR radiobiology research program which investigates these effects using multiple model systems and various biological endpoints. This paper summarizes the evolution of the REPAIR project over the first 6-years including its experimental scope and capabilities as well as research accomplishments.


Assuntos
Radiação de Fundo , Radiação Cósmica , Radiobiologia , Radiação Ionizante
10.
Adv Radiat Oncol ; 8(1): 101066, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36483063

RESUMO

Purpose: Nontargeted low-dose ionizing radiation has been proposed as a cancer therapeutic for several decades; however, questions remain about the duration of hematological changes and optimal dosing regimen. Early studies delivering fractionated low doses of radiation to patients with cancer used varying doses and schedules, which make it difficult to standardize a successful dose and scheduling system for widespread use. The aim of this phase 2 two-stage trial was to determine whether low-dose radiation therapy (LD-RT) reduced prostate-specific antigen (PSA) in patients with recurrent prostate cancer in efforts to delay initiation of conventional therapies that are known to decrease quality of life. The primary study outcome was reduction in PSA levels by at least 50%. Methods and Materials: Sixteen patients with recurrent prostate cancer were recruited and received 2 doses of 150 mGy of nontargeted radiation per week, for 5 consecutive weeks, with 15 participants completing the study. Results: A maximal response of 40.5% decrease in PSA at 3 months was observed. A total of 8 participants remained off any additional interventions, of whom 3 had minor fluctuations in PSA for at least 1 year after treatment. The most common adverse event reported was mild fatigue during active treatment (n = 4), which did not persist in the follow-up period. No participants withdrew due to safety concerns or hematological abnormalities (ie, platelet ≤50 × 109/L, leukocyte ≤3 × 109/L, granulocyte ≤2 × 109/L). Conclusions: Our study did not meet the primary objective; however, LD-RT may be a potential therapy for some patients with recurrent prostate cancer by stalling rising PSA. This study also demonstrates that low-dose radiation is well tolerated by participants with minimal toxicities and no change in quality of life.

11.
World J Microbiol Biotechnol ; 38(12): 255, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36319705

RESUMO

Phosphate (Pi) is essential for life as it is an integral part of the universal chemical energy adenosine triphosphate (ATP), and macromolecules such as, DNA, RNA proteins and lipids. Despite the core roles and the need of this nutrient in living cells, some bacteria can grow in environments that are poor in Pi. The metabolic mechanisms that enable bacteria to proliferate in a low phosphate environment are not fully understood. In this study, the soil microbe Pseudomonas (P.) fluorescens was cultured in a control and a low Pi (stress) medium in order to delineate how energy homeostasis is maintained. Although there was no significant variation in biomass yield in these cultures, metabolites like isocitrate, oxaloacetate, pyruvate and phosphoenolpyruvate (PEP) were markedly increased in the phosphate-starved condition. Components of the glycolytic, glyoxylate and tricarboxylic acid cycles operated in tandem to generate ATP by substrate level phosphorylation (SLP) as NADH-producing enzymes were impeded. The α-ketoglutarate (KG) produced when glutamine, the sole carbon nutrient was transformed into phosphoenol pyruvate (PEP) and succinyl-CoA (SC), two high energy moieties. The metabolic reprogramming orchestrated by isocitrate lyase (ICL), phosphoenolpyruvate synthase (PEPS), pyruvate phosphate dikinase (PPDK), and succinyl-CoA synthetase fulfilled the ATP budget. Cell free extract experiments confirmed ATP synthesis in the presence of such substrates as PEP, oxaloacetate and isocitrate respectively. Gene expression profiling revealed elevated transcripts associated with numerous enzymes including ICL, PEPS, and succinyl-CoA synthetase (SCS). This microbial adaptation will be critical in promoting biological activity in Pi-poor ecosystems.


Assuntos
Pseudomonas fluorescens , Pseudomonas fluorescens/metabolismo , Trifosfato de Adenosina/metabolismo , Isocitratos/metabolismo , Fosfatos/metabolismo , Ecossistema , Fosfoenolpiruvato/metabolismo , Homeostase , Ácido Pirúvico/metabolismo , Oxaloacetatos/metabolismo , Ligases/metabolismo
12.
Cells ; 11(10)2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35626652

RESUMO

Circadian clocks control many vital aspects of physiology from the sleep-wake cycle to metabolism. The circadian clock operates through transcriptional-translational feedback loops. The normal circadian signaling relies on a 'master clock', located in the suprachiasmatic nucleus (SCN), which synchronizes peripheral oscillators. Glucocorticoid receptor (GR) signaling has the ability to reset the phase of peripheral clocks. It has been shown that maternal exposure to glucocorticoids (GCs) can lead to modification of hypothalamic-pituitary-adrenal (HPA) function, impact stress-related behaviors, and result in a hypertensive state via GR activation. We previously demonstrated altered circadian rhythm signaling in the adrenal glands of offspring exposed to the synthetic GC, dexamethasone (Dex). Results from the current study show that prenatal exposure to Dex affects circadian rhythm gene expression in a brain region-specific and a sex-specific manner within molecular oscillators of the amygdala, hippocampus, paraventricular nucleus, and prefrontal cortex, as well as the main oscillator in the SCN. Results also show that spontaneously hypertensive rats (SHR) exhibited dysregulated circadian rhythm gene expression in these same brain regions compared with normotensive Wistar-Kyoto rats (WKY), although the pattern of dysregulation was markedly different from that seen in adult offspring prenatally exposed to GCs.


Assuntos
Ritmo Circadiano , Glucocorticoides , Animais , Encéfalo , Ritmo Circadiano/fisiologia , Feminino , Expressão Gênica , Glucocorticoides/farmacologia , Masculino , Gravidez , Ratos , Ratos Endogâmicos WKY
13.
Bioengineering (Basel) ; 9(5)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35621492

RESUMO

MicroRNAs (miRNAs) have emerged as a potential class of biomolecules for diagnostic biomarker applications. miRNAs are small non-coding RNA molecules, produced and released by cells in response to various stimuli, that demonstrate remarkable stability in a wide range of biological fluids, in extreme pH fluctuations, and after multiple freeze-thaw cycles. Given these advantages, identification of miRNA-based biomarkers for radiation exposures can contribute to the development of reliable biological dosimetry methods, especially for low-dose radiation (LDR) exposures. In this study, an miRNAome next-generation sequencing (NGS) approach was utilized to identify novel radiation-induced miRNA gene changes within the CGL1 human cell line. Here, irradiations of 10, 100, and 1000 mGy were performed and the samples were collected 1, 6, and 24 h post-irradiation. Corroboration of the miRNAome results with RT-qPCR verification confirmed the identification of numerous radiation-induced miRNA expression changes at all doses assessed. Further evaluation of select radiation-induced miRNAs, including miR-1228-3p and miR-758-5p, as well as their downstream mRNA targets, Ube2d2, Ppp2r2d, and Id2, demonstrated significantly dysregulated reciprocal expression patterns. Further evaluation is needed to determine whether the candidate miRNA biomarkers identified in this study can serve as suitable targets for radiation biodosimetry applications.

14.
Antioxidants (Basel) ; 11(3)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35326210

RESUMO

Sulfur is an essential element for life. However, the soil microbe Pseudomonas (P.) fluorescens can survive in a low sulfur environment. When cultured in a sulfur-deficient medium, the bacterium reprograms its metabolic pathways to produce α-ketoglutarate (KG) and regenerate this keto-acid from succinate, a by-product of ROS detoxification. Succinate semialdehyde dehydrogenase (SSADH) and KG decarboxylase (KGDC) work in partnership to synthesize KG. This process is further aided by the increased activity of the enzymes glutamate decarboxylase (GDC) and γ-amino-butyrate transaminase (GABAT). The pool of succinate semialdehyde (SSA) generated is further channeled towards the formation of the antioxidant. Spectrophotometric analyses, HPLC experiments and electrophoretic studies with intact cells and cell-free extracts (CFE) pointed to the metabolites (succinate, SSA, GABA) and enzymes (SSADH, GDC, KGDC) contributing to this KG-forming metabolic machinery. Real-time polymerase chain reaction (RT-qPCR) revealed significant increase in transcripts of such enzymes as SSADH, GDC and KGDC. The findings of this study highlight a novel pathway involving keto-acids in ROS scavenging. The cycling of succinate into KG provides an efficient means of combatting an oxidative environment. Considering the central role of KG in biological processes, this metabolic network may be operative in other living systems.

15.
Bioengineering (Basel) ; 9(1)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35049738

RESUMO

The lens of the eye is one of the most radiosensitive tissues. Although the exact mechanism of radiation-induced cataract development remains unknown, altered proliferation, migration, and adhesion have been proposed as factors. Lens epithelial cells were exposed to X-rays (0.1-2 Gy) and radiation effects were examined after 12 h and 7 day. Proliferation was quantified using an MTT assay, migration was measured using a Boyden chamber and wound-healing assay, and adhesion was assessed on three extracellular matrices. Transcriptional changes were also examined using RT-qPCR for a panel of genes related to these processes. In general, a nonlinear radiation response was observed, with the greatest effects occurring at a dose of 0.25 Gy. At this dose, a reduction in proliferation occurred 12 h post irradiation (82.06 ± 2.66%), followed by an increase at 7 day (116.16 ± 3.64%). Cell migration was increased at 0.25 Gy, with rates 121.66 ± 6.49% and 232.78 ± 22.22% greater than controls at 12 h and 7 day respectively. Cell adhesion was consistently reduced above doses of 0.25 Gy. Transcriptional alterations were identified at these same doses in multiple genes related to proliferation, migration, and adhesion. Overall, this research began to elucidate the functional changes that occur in lens cells following radiation exposure, thereby providing a better mechanistic understanding of radiation-induced cataract development.

16.
Sci Rep ; 11(1): 20342, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645877

RESUMO

Prenatal stress through glucocorticoid (GC) exposure leads to an increased risk of developing diseases such as cardiovascular disease, metabolic syndrome and hypertension in adulthood. We have previously shown that administration of the synthetic glucocorticoid, dexamethasone (Dex), to pregnant Wistar-Kyoto dams produces offspring with elevated blood pressures and disrupted circadian rhythm signaling. Given the link between stress, circadian rhythms and metabolism, we performed an untargeted metabolomic screen on the livers of offspring to assess potential changes induced by prenatal Dex exposure. This metabolomic analysis highlighted 18 significantly dysregulated metabolites in females and 12 in males. Pathway analysis using MetaboAnalyst 4.0 highlighted key pathway-level metabolic differences: glycerophospholipid metabolism, purine metabolism and glutathione metabolism. Gene expression analysis revealed significant upregulation of several lipid metabolism genes in females while males showed no dysregulation. Triglyceride concentrations were also found to be significantly elevated in female offspring exposed to Dex in utero, which may contribute to lipid metabolism activation. This study is the first to conduct an untargeted metabolic profile of liver from GC exposed offspring. Corroborating metabolic, gene expression and lipid profiling results demonstrates significant sex-specific lipid metabolic differences underlying the programming of hepatic metabolism.


Assuntos
Ritmo Circadiano/efeitos dos fármacos , Dexametasona/efeitos adversos , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolômica , Efeitos Tardios da Exposição Pré-Natal , Caracteres Sexuais , Transdução de Sinais/efeitos dos fármacos , Animais , Dexametasona/farmacologia , Feminino , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Ratos , Ratos Endogâmicos WKY
17.
Antioxidants (Basel) ; 10(4)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805403

RESUMO

The field of cardiovascular fetal programming has emphasized the importance of the uterine environment on postnatal cardiovascular health. Studies have linked increased fetal glucocorticoid exposure, either from exogenous sources (such as dexamethasone (Dex) injections), or from maternal stress, to the development of adult cardiovascular pathologies. Although the mechanisms are not fully understood, alterations in gene expression driven by altered oxidative stress and epigenetic pathways are implicated in glucocorticoid-mediated cardiovascular programming. Antioxidants, such as the naturally occurring polyphenol epigallocatechin gallate (EGCG), or the superoxide dismutase (SOD) 4-hydroxy-TEMPO (TEMPOL), have shown promise in the prevention of cardiovascular dysfunction and programming. This study investigated maternal antioxidant administration with EGCG or TEMPOL and their ability to attenuate the fetal programming of hypertension via Dex injections in WKY rats. Results from this study indicate that, while Dex-programming increased blood pressure in male and female adult offspring, administration of EGCG or TEMPOL via maternal drinking water attenuated Dex-programmed increases in blood pressure, as well as changes in adrenal mRNA and protein levels of catecholamine biosynthetic enzymes phenylalanine hydroxylase (PAH), tyrosine hydroxylase (TH), dopamine beta hydroxylase (DBH), and phenylethanolamine N-methyltransferase (PNMT), in a sex-specific manner. Furthermore, programmed male offspring displayed reduced antioxidant glutathione peroxidase 1 (Gpx1) expression, increased superoxide dismutase 1 (SOD1) and catalase (CAT) expression, and increased pro-oxidant NADPH oxidase activator 1 (Noxa1) expression in the adrenal glands. In addition, prenatal Dex exposure alters expression of epigenetic regulators histone deacetylase (HDAC) 1, 5, 6, 7, 11, in male and HDAC7 in female offspring. These results suggest that glucocorticoids may mediate the fetal programming of hypertension via alteration of epigenetic machinery and oxidative stress pathways.

18.
Brain Behav ; 11(4): e02049, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33528889

RESUMO

INTRODUCTION: Fetal programming was characterized a few decades ago, explaining the correlation of physiological phenotypes of offspring exposed to early-life stress. High acute or chronic prenatal stress can overwhelm the enzymatic placental barrier, inducing transcriptional changes in the fetus that can result in different adverse behavioral and physiological phenotypes. The current study investigates the impact of exposure to the synthetic glucocorticoid, dexamethasone, during late gestation on behavioral outcomes. METHODS: Pregnant Wistar Kyoto rats were given daily subcutaneous injections from gestational days 15-21 of either dexamethasone (0.9% NaCl, 4% EtOH, 100 µg kg-1  day-1 ) or were physically manipulated as naïve controls. Pups were raised normally until 17 weeks of age and underwent the Porsolt swim task and elevated plus maze for depressive and anxiety-like behaviors, respectively. Neural tissue was preserved for genetic analysis using quantitative real-time polymerase chain reaction. RESULTS: Statistical analyses show significant disruption of behavior and genetic profiles of offspring exposed to dexamethasone in-utero. Exposed animals spent more time immobile on the swim task and entered open arms of the elevated plus maze more often than their naïve counterparts. In the prefrontal cortex, there was a sex by treatment interaction on gene expression relevant to neural transmission in ryanodine receptor 2, as well as increased gene expression in SNAP25, COMT, and LSAMP in males prenatally exposed to dexamethasone compared with controls. Both dysregulated genes and behavior are linked to decreased anxiety and fear inhibition. CONCLUSION: Our results indicate adult offspring exposed to dexamethasone in-utero have a tendency toward passive stress-coping strategies and an inhibition of anxiety on behavioral tasks. Methyltransferase activity, synaptic activity, and cellular processes were disrupted in the prefrontal cortices of these animals. Specifically, genes involved in emotional response pathways were overexpressed, supporting the link between the behavioral and genetic profiles. Combined, we determine that dexamethasone offspring have adaptive predispositions when faced with novel situations, with increased immobility in the swim task and increased exploration on the elevated plus maze.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Animais , Ansiedade/induzido quimicamente , Dexametasona/toxicidade , Feminino , Desenvolvimento Fetal , Masculino , Placenta , Gravidez , Ratos , Ratos Endogâmicos WKY
19.
Sci Rep ; 10(1): 18755, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33127986

RESUMO

Prenatal glucocorticoid exposure is associated with the development of hypertension in adults. We have previously demonstrated that antenatal dexamethosone (DEX) administration in Wistar-Kyoto dams results in offspring with increased blood pressure coupled with elevated plasma epinephrine levels. In order to elucidate the molecular mechanisms responsible for prenatal DEX-mediated programming of hypertension, a whole-transcriptome analysis was performed on DEX programmed WKY male adrenal glands using the Rat Gene 2.0 microarray. Differential gene expression (DEG) analysis of DEX-exposed offspring compared with saline-treated controls revealed 142 significant DEGs (109 upregulated and 33 downregulated genes). DEG pathway enrichment analysis demonstrated that genes involved in circadian rhythm signaling were most robustly dysregulated. RT-qPCR analysis confirmed the increased expression of circadian genes Bmal1 and Npas2, while Per2, Per3, Cry2 and Bhlhe41 were significantly downregulated. In contrast, gene expression profiling of Spontaneously Hypertensive (SHR) rats, a genetic model of hypertension, demonstrated decreased expression of Bmal1 and Npas2, while Per1, Per2, Per3, Cry1, Cry2, Bhlhe41 and Csnk1D were all upregulated compared to naïve WKY controls. Taken together, this study establishes that glucocorticoid programmed adrenals have impaired circadian signaling and that changes in adrenal circadian rhythm may be an underlying molecular mechanism responsible for the development of hypertension.


Assuntos
Glucocorticoides/farmacologia , Transcriptoma/genética , Glândulas Suprarrenais/efeitos dos fármacos , Glândulas Suprarrenais/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/genética , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/genética , Feminino , Perfilação da Expressão Gênica , Ontologia Genética , Glucocorticoides/uso terapêutico , Hipertensão/tratamento farmacológico , Masculino , Gravidez , Análise de Componente Principal , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Transcriptoma/efeitos dos fármacos
20.
PLoS One ; 15(4): e0231650, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32315370

RESUMO

Exposure to ionizing radiation contributing to negative health outcomes is a widespread concern. However, the impact of low dose and sub-lethal dose radiation (SLDR) exposures remain contentious, particularly in pregnant women who represent a vulnerable group. The fetal programming hypothesis states that an adverse in utero environment or stress during development of an embryo or fetus can result in permanent physiologic changes often resulting in progressive metabolic dysfunction with age. To assess changes in gene expression profiles of glucose/insulin signaling and lipid metabolism caused by radiation exposure in utero, pregnant C57Bl/6J mice were irradiated using a dose response ranging from low dose to SLDR and compared to a Sham-irradiated group. mRNA expression analysis in 16 week old offspring (n = 84) revealed that genes involved in metabolic function including glucose metabolism, insulin signaling and lipid metabolism were unaffected by prenatal radiation exposures up to 300 mGy. However, female offspring of dams exposed to 1000 mGy had upregulated expression of genes contributing to insulin resistance and gluconeogenesis. In a second cohort of mice, the effects of SLDR on fetal programming of hepatic SOCS3 and PEPCK protein expression were assessed. 4 month old female offspring of dams irradiated at 1000 mGy had: 1) increased liver weights, 2) increased hepatic expression of proteins involved in glucose metabolism and 3) increased 18F-fluorodeoxyglucose (FDG) uptake in interscapular brown adipose tissue (IBAT) measured by positron emission tomography (PET) (n = 25). The results of this study indicate that prenatal radiation exposure does not affect metabolic function up to 300 mGy and 1000 mGy may be a threshold dose for sex-specific alterations in glucose uptake and hepatic gene and protein expression of SOCS3, PEPCK, PPARGC1A and PPARGC1B. These findings suggest that SLDR doses alter glucose uptake in IBAT and hepatic gene and protein expression of offspring and these changes may progress with age.


Assuntos
Tecido Adiposo Marrom/crescimento & desenvolvimento , Desenvolvimento Fetal/genética , Resistência à Insulina/genética , Fígado/metabolismo , Tecido Adiposo Marrom/efeitos da radiação , Animais , Glicemia/metabolismo , Metabolismo dos Carboidratos/genética , Modelos Animais de Doenças , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/fisiopatologia , Feminino , Desenvolvimento Fetal/efeitos da radiação , Feto , Glucose/metabolismo , Humanos , Insulina/metabolismo , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/efeitos da radiação , Fígado/patologia , Masculino , Camundongos , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...